Data collection
Enraf-Nonius CA
$\omega / 2 \theta$ scans
Absorption correction: none
6403 measured reflections
5766 independent reflections
(including Friedel pairs)
5468 reflections with
$I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R(F)=0.062$
$w R\left(F^{2}\right)=0.161$
$S=0.990$
5745 reflections
391 parameters
H atoms riding
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.136 P)^{2}\right.$ $+0.142 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$R_{\text {int }}=0.023$
$\theta_{\text {max }}=68.0^{\circ}$
$h=0 \rightarrow 11$
$k=-14 \rightarrow 14$
$l=-16 \rightarrow 16$
3 standard reflections every 200 reflections intensity decay: none
$(\Delta / \sigma)_{\text {max }}=0.005$
$\Delta \rho_{\text {max }}=0.284 \mathrm{e}^{-3}{ }^{-3}$
$\Delta \rho_{\text {min }}=-0.270 \mathrm{e}^{-3}$
Extinction correction: none
Scattering factors from International Tables for Crystallography (Vol. C)
Absolute structure: Flack (1983)

Flack parameter $=0.0(2)$

The methyl C24 atom of the ethoxy group attached to C8 of (2) had only partial site occupancy which refined to a value of 0.35 (2). The H atoms were included at geometrically idealized positions, with $\mathrm{C}-\mathrm{H}$ and $\mathrm{O}-\mathrm{H}$ distances of $0.95 \AA$.
Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: TEXSAN (Molecular Structure Corporation, 1994). Program(s) used to solve structure: SAPI91 (Fan, 1991). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: TEXSAN. Software used to prepare material for publication: SHELXL93.

The authors thank Professor M. H. Benn for providing laboratory space, supervision and financial assistance (to WG), Syed Iftikhar Hussain Shah (Taxonomist, Faculty of Pharmacy, Gomal University, Pakistan) for help in plant collection and the University of Calgary for financial support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG1415). Services for accessing these data are described at the back of the journal.

References

Codding, P. W. (1982). Acta Crust. B38, 2519-2522.
De Camp, W. H. \& Pelletier, S. W. (1977). Acta Crust. B33, 722-727.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Fan, H.-F. (1991). SAP191. Structure Analysis Program with Intelligent Control. Rigaku Corporation, Tokyo, Japan.
Flack, H. D. (1983). Actu Cryst. A39, 876-881.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Molecular Structure Corporation (1994). TEXSAN. Single Crystal Structure Analysis Sofiware. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Parvez, M., Gul, W. \& Anwar, S. (1998). Acta Cryst. C54, 125-126.
Parvez, M., Gul, W., Anwar, S., Miana, G. A., Atta-ur-Rahman \& Choudhary, M. I. (1998). Acta Crust. C54, 236-238.

Przybylska, M. \& Ahmed, F. R. (1980). Acta Cřst. B36, 494-497.
Sheldrick. G. M. (1993). SHELXL93. Program for the Refinement of Crustal Structures. University of Göttingen, Germany.

Acta Cryst. (1998). C54, 792-795

Hydrogen-Bonding Patterns in a Centrosymmetric Structure with $Z^{\prime}=2: \alpha, \alpha^{\prime}, \alpha^{\prime \prime}-$ Trimethyl-1,3,5-benzenetrimethanol

Anthony C. Blackburn and Roger E. Gerkin
Department of Chemistry; The Ohio State Universit; Columbus, Ohio 43210, USA. E-mail: gerkin@chemistry. ohio-state.edu

(Received 6 October 1997; accepted 22 December 1997)

Abstract

The title molecule, $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{3}$, crystallized in the centrosymmetric space group $P 2_{1} / c$ with two molecules in the asymmetric unit. Each molecule donates three, and accepts three, hydrogen bonds. The $\mathrm{O}_{d} \cdots \mathrm{O}_{a}$ distances in these bonds range from 2.687 (3) to 2.787 (2) \AA. The hydroxyl H atoms are ordered. A three-dimensional network of hydrogen-bond chains is formed which is 'decorated' with sets of cyclic hydrogen bonds and numerous finite hydrogen-bond patterns. This structure shows both similarities and differences with respect to the structures of the related molecules benzene-1,3,5-triacetic acid and benzene-1,3,5-trimethanol.

Comment

This report on $\alpha, \alpha^{\prime}, \alpha^{\prime \prime}$-trimethyl-1, 3,5-benzenetrimethanol, (I), is one of a series on hydrogen bonding in aromatic organic solids and follows a study of the related substance benzene-1,3,5-triacetic acid (hereafter BTA) which was shown to have extensive interwoven hydrogen-bonding networks (Fitzgerald \& Gerkin, 1997). Structural comparisons with the closely related substance benzene-1,3,5-trimethanol (hereafter BTM) (Bell et al., 1996) are of particular interest.

(1)

The title substance crystallized in the centrosymmetric space group $P 2_{1} / c$ with two molecules in the asymmetric unit. The refined molecules, designated A and B, and the numbering scheme are shown in Fig. 1. Each of the molecules contains three chiral groups: the groups at C 7 A and $C 7 B$ have the R configuration, while those at C9A, $C 11 A, C 9 B$ and $C 11 B$ have the S configuration in the molecules specified by the atom list.

(a)

(b)

Fig. 1. ORTEPII (Johnson, 1976) drawing of $\alpha, \alpha^{\prime}, \alpha^{\prime \prime}$-trimethyl-1,3,5-benzenetrimethanol: (a) the A molecule; (b) the B molecule, showing the atomic numbering scheme. Displacement ellipsoids are drawn at 50% probability for non- H atoms and H atoms are shown as small spheres. The disordered methyl C atom, C51A, has been omitted for clarity.

In the title structure, each hydroxyl group H atom is ordered and each participates in one hydrogen bond. Each hydroxyl O atom participates in two hydrogen bonds, once as a donor and once as an acceptor. The geometric details of these bonds are given in Table 2. Each A molecule is linked by its six hydrogen bonds to two neighboring A molecules and to four
neighboring B molecules; each B molecule is linked by its six hydrogen bonds to four neighboring A molecules but to only one neighboring B molecule (with which it forms a cyclic dimer). The hydrogen-bonding neighbors of an A and a B molecule are shown in Figs. $2(a)$ and $2(b)$, respectively; hydrogen bonds are designated $(a)-(f)$ in the order given in Table 2. The relative simplicity of this description belies the extensive and varied hydrogen-bonding patterns which develop, which are compactly described in terms of hydrogenbond graph sets (Bernstein et al., 1995). The graphset descriptors for the first-level and basic second-level graphs are given in Table 3, which makes apparent the

(a)

(b)

Fig. 2. ORTEPII (Johnson, 1976) drawings of (a) a central A molecule and its six hydrogen-bonded neighbors, and (b) a central B molecule and its five hydrogen-bonded neighbors. The hydrogen bonds are depicted by the lighter lines and are labeled $(a)-(f)$ in the order in which they appear in Table 2. For clarity, all H atoms except those involved in hydrogen bonding have been omitted and all atoms are arbitrarily small but with O atoms drawn larger for emphasis. Both views are from nearly along the a axis with the b axis horizontal.
rich variety of chains, rings and finite patterns formed by these hydrogen bonds. The hydrogen-bond chains, in their order of appearance in Table 3, propagate in the following directions: c, b, [201], a and c. Clearly these chains constitute a three-dimensional network which is 'decorated' with the three types of hydrogen-bonding rings and the numerous finite patterns. The abundance of $D[R]$ second-level graph-set descriptors is as anticipated for centrosymmetric structures with $Z^{\prime}>1$ (Bernstein et al., 1995; p. 1568).

The benzene core $\mathrm{C}-\mathrm{C}$ distances show no significant variation, ranging from $1.383(3)$ to $1.395(3) \AA$ for molecule A and from 1.378 (3) to $1.393(3) \AA$ for B, with an average value of $1.387(4) \AA$ for A and 1.388 (5) \AA for B; these values are in good agreement with corresponding values for BTA and BTM. The core interior angles alternate systematically, the mean value at the substituted C atoms being 2.4° less than that at the unsubstituted C atoms; this result is in very good agreement with results for BTA and BTM, for which the corresponding values are 3.4 and 2.7°, respectively. However, whereas for BTM, the $\mathrm{C}-\mathrm{O}$ bond lengths are stated by those authors to vary widely (a range of $43 \times$ $10^{-3} \AA$), they are quite uniform in the present structure, the six values lying in the interval from 1.416 (3) to 1.426 (3) \AA, with a mean value of 1.421 (3) \AA.

The benzene cores in (I) are almost planar: the maximum deviation of a core atom from the best-fit plane describing the A core is 0.004 (2) \AA, while for the B core, it is $0.009(2) \AA$; the average deviation is 0.002 (1) \AA for the A core and 0.005 (3) \AA for the B core. These values are quite similar to the corresponding values for BTA and BTM. Choosing the ring C atom to which a substituent is attached, the central C atom of that substituent and the O atom of that substituent to define a substituent plane, we find the dihedral angles between these substituent planes and the benzene core planes to be $30.9(2), 26.8(3)$ and $35.9(2)^{\circ}$ for the A molecules, and $34.7(2), 35.8(3)$ and $22.6(2)^{\circ}$ for the B molecules in the title structure. Clearly, pseudo-threefold symmetry is precluded by these values which are, however, much more nearly uniform than those for the corresponding planes in BTA [84.3(1), $89.8(2)$ and $58.0(2)^{\circ}$] or in BTM [6.1, 68.5, and 69.8° (our calculation)]. The dihedral angle between the core planes of the two non-parallel sets of A molecules is $10.5(1)^{\circ}$, while for the B molecules, it is $29.0(1)^{\circ}$. The dihedral angles between the core planes of the A molecules and the core planes of the B molecules are 9.2 (1) and $19.8(1)^{\circ}$.

Distances and angles of special interest in the title molecule are given in Table 1.

The closest intermolecular approaches, excluding pairs of atoms within directly hydrogen-bonded groups, are between $\mathrm{C} 11 A$ and $\mathrm{H} 16 A^{\mathrm{iv}}$ [symmetry code: (iv) x, $\frac{1}{2}-y, \frac{1}{2}+z$], and are $0.08 \AA$ less than the corresponding Bondi (1964) van der Waals radius sum

Experimental

$\alpha, \alpha^{\prime}, \alpha^{\prime \prime}$-Trimethyl-1,3,5-benzenetrimethanol was obtained as small colorless crystals from the chemical collection of Dr M. S. Newman. These crystals were dissolved in ethanol and the resulting solution evaporated at room temperature to produce X-ray quality crystals, one of which was cut to provide the experimental sample. A preparation of the title compound is described by Wallace et al. (1992).

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{3}$
$M_{r}=210.27$
Monoclinic
$P 2_{1} / c$
$a=9.386(2) \AA$
$b=27.500(1) \AA$
$c=10.316(2) \AA$
$\beta=115.51(2)^{\circ}$
$V=2403.2(9) \AA^{3}$
$Z=8$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=12.6-17.1^{\circ}$
$\mu=0.082 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Cut plate
$0.35 \times 0.35 \times 0.19 \mathrm{~mm}$ Colorless
$D_{s}=1.162 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Rigaku AFC-5S diffractometer
ω scans
Absorption correction: none
6027 measured reflections
5697 independent reflections
3119 reflections with

$$
I>2 \sigma_{I}
$$

$R_{\mathrm{int}}=0.019$

$$
\begin{aligned}
& \theta_{\text {max }}=27.56^{\circ} \\
& h=0 \rightarrow 12 \\
& k=0 \rightarrow 35 \\
& l=-13 \rightarrow 12 \\
& 6 \text { standard reflections } \\
& \text { every } 150 \text { reflections } \\
& \text { intensity variation: } \pm 2.2 \% \\
& \quad \text { (average maximum } \\
& \text { relative intensity) }
\end{aligned}
$$

Refinement

Refinement on F^{2}	$w^{\prime}=1 / \sigma^{2}\left(F^{2}\right)$
$R(F)=0.071$	$(\Delta / \sigma)_{\max }<0.01$
$w \cdot R\left(F^{2}\right)=0.083$	$\Delta \rho_{\max }=0.52 \mathrm{e} \mathrm{e}^{-3}$
$S=2.11$	$\Delta \rho_{\min }=-0.43 \mathrm{e}^{-3}$
5563 reflections	Extinction correction: none
300 parameters	Scattering factors from
H atoms treated by a	Stewart et al. $(1965)(\mathrm{H})$
\quad mixture of independent	and Creagh $\&$ McAuley
and constrained refinement	$(1992)(\mathrm{C}, \mathrm{O})$

```
\(\sigma^{2}\left(F^{2}\right)\)
\((\Delta / \sigma)_{\text {max }}<0.01\).
\(\Delta \rho_{\text {max }}=0.52 \mathrm{e}^{\AA^{-3}}\)
```

Extinction correction: none Scattering factors from
and Creagh \& McAuley
(1992) (C. O)

Table 1. Selected geometric parameters $\left(\AA,^{\circ}\right)$

O1A-C7A	1.419 (.3)	O1B-C7B	1.426 (3)
O2A-C9A	1.42 .3 (3)	$\mathrm{O} 2 B-\mathrm{C} 9 B$	1.416 (3)
O3A-Cl1a	1.420 (3)	O3B-C11B	1.422 (3)
C7A-C8A	1.508 (3)	$C 7 B-C 8 B$	1.505 (3)
C9A-ClOA	1.447 (4)	C9B-C10B	1.493 (4)
Cl1A-C12A	1.478 (4)	C11B-C12B	1.466 (3)
C2A-C1A-C6A	118.8 (2)	C2B-C1B-C6B	118.8 (2)
C1A-C2A-C3A	121.4 (2)	$\mathrm{C} 1 B-\mathrm{C} 2 B-\mathrm{C} 3 B$	120.8 (2)
C2A-C3A-C4A	118.6 (2)	$\mathrm{C} 2 B-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 B$	119.1 (2)
C3A--C4A-C5A	121.0)(2)	C3B-C4B-C5B	120.6 (2)
C4A-C5A-C6A	119.0 (2)	C4B-C5B-C6B	119.2 (2)
C1A-C6A-C5A	121.3 (2)	C1B-C6B-C5B	121.4 (2)
$\mathrm{O} 1 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{Cl} 1 \mathrm{~A}$	$112.2(2)$	$\mathrm{O} 1 B-\mathrm{C} 7 B-\mathrm{C} 1 B$	113.1 (2)
O1A-C7A-C8A	107.5 (2)	$\mathrm{O} 1 B-\mathrm{C} 7 B-\mathrm{C} 8 B$	110.9 (2)
O2A-C9A-C3A	108.8 (2)	$\mathrm{O} 2 B-\mathrm{C} 9 B-\mathrm{C} 3 B$	$112.8(2)$
O2A-C9A-C10A	114.1 (3)	$\mathrm{O} 2 B-\mathrm{C} 9 B-\mathrm{C} 10 B$	107.4 (2)
O3A-C11A-C5A	108.2 (2)	O3 3 - $\mathrm{C} 11 \mathrm{~B}-\mathrm{C} 5 B$	112.6 (2)
O3A-C11A-C12A	113.0(2)	$\mathrm{O} 3 \mathrm{~B}-\mathrm{C} 11 \mathrm{~B}-\mathrm{Cl} 2 B$	108.5 (2)

Table 2. Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$

D-H. \cdot A	D-H	H...A	D...	D-H..A
O1A-H16A . ${ }^{\text {O }}$ 3 ${ }^{1}$	0.86 (3)	1.87 (3)	2.726 (3)	171 (3)
O2A-H17A. ${ }^{\text {O }}$ 3 $B^{\prime \prime}$	0.83 (2)	1.96 (2)	2.787 (2)	173 (3)
O3A-H18A. ${ }^{\text {O } 23 B^{111}}$	0.74 (2)	1.96 (2)	2.697 (3)	170)(3)
$\mathrm{OIB}-\mathrm{HI} 6 B \cdots \mathrm{Ol} A^{\prime \prime}$	0.77 (2)	2.00 (2)	2.764 (3)	171 (3)
$\mathrm{O} 2 B-\mathrm{H} 17 B \cdots \mathrm{O} 2 A$	0.80 (2)	1.94 (2)	2.737 (3)	175 (3)
O3B-H18B . O1B	0.89 (2)	1.80 (2)	2.687 (3)	175 (3)

Symmetry codes: (i) $x, \frac{1}{2}-y, z-\frac{1}{2}$; (ii) $-x, 1-y, 1-z ;$ (iii) $x-1, y, z$; (iv) $x, \frac{1}{2}-y, \frac{1}{2}+z ;($ v $)-x, 1-y, 2-z$.

Table 3. First- and basic second-level graph-set descriptors involving hydrogen bonds designated (a) to (f) in the order given in Table 2

	(a)	(b)	(c)	(d)	(e)	(f)
(a)	C(8)	$D_{2}^{2}(10)$	$D_{3}^{3}(13)$	$D_{2}^{2}(4)$	$D_{2}^{2}(9)$	
(b)		D	$R_{\text {d }}^{\text {d }}$ (32)	$C_{2}^{2}(16)$	$R_{+}^{4}(20)$	$D_{3}^{3}(11)\left[R_{2}^{2}(16)\right]$
(c)			D	$C_{2}^{2}(16)$	$C_{2}^{2}(10)$	$D_{3}^{3}(17)\left[R_{2}^{2}(16)\right]$
(d)				D	$C_{2}^{2}(16)$	$D_{3}^{3}(13)\left[R_{2}^{2}(16)\right]$
(e)					D	$\left.D_{3}^{3}(19) \mid R_{2}^{2}(16)\right]$
(f)						R_{2}^{2} (16)

Fourier difference methods were used to locate initial H -atom positions for all but one of the methyl H atoms; the H atoms were then refined isotropically. Subsequently, all H atoms except the hydroxyl H atoms were made canonical, with a C H distance of $0.98 \AA$ and isotropic displacement parameters fixed at 1.2 times those of the attached C atoms. The hydroxyl H atoms were refined isotropically. When the model with two molecules as the asymmetric unit converged, the maximum residual difference peak indicated methyl group disorder in the C10A group. The maximum residual peak was assigned as $\mathrm{C} 51 A$ and the populations of $\mathrm{C} 10 A$ and C51A were refined together with the six coordinates, anisotropic displacement components for C10A and an isotropic displacement factor for C51A. Taking into consideration the relatively small occupancy of C51A, 0.183, the geometry at the refined C51A atom is reasonable: C9A-C51A 1.35 (2) \AA and C3A-C9AC51A $122.3(7)^{\circ}$. Due to the relatively small occupancy of C51A, no attempt was made to model its H atoms.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988). Cell refinement: MSC/AFC Diffractometer Control Software. Data reduction: TEXSAN (Molecular Structure Corporation, 1995). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: TEXSAN. Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: TEXSAN and PLATON (Spek, 1990).

The authors thank Dr Kurt Loening for help with nomenclature and Dr J. C. Gallucci for help of various sorts. The diffractometer was purchased with funds provided in part by an NIH grant.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG1397). Services for accessing these data are described at the back of the journal.

References

Bell, W., Coupar, P. I., Ferguson, G. \& Glidewell, C. (1996). Acta Cryst. C52, 2520-2524.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995), Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
Creagh, D. C. \& McAuley, W. J. (1992). International Tables for X-ray Crystallography, Vol. C, pp. 219-222. Dordrecht: Kluwer Academic Publishers.
Fitzgerald, L. J. \& Gerkin, R. E. (1997). Acta Cryst. C53, 967-969.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1995). TEXSAN. Single Crystal Structure Analysis Software. Version 1.7-2. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Sheldrick, G. M. (1985). SHELXS86. Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger \& R. Goddard, pp. 175-189. Oxford University Press.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.
Wallace, J. S., Baldwin, B. W. \& Morrow, C. J. (1992). J. Org. Chem. 57, 5231-5239.

Acta Cryst. (1998). C54, 795-798

Biphenyl-2-carboxylic Acid: a Layered Structure

Allison J. Dobson and Roger E. Gerkin
Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA. E-mail: gerkin@chemistry. ohio-state.edu

(Received 4 August 1997; accepted 5 December 1997)

Abstract

The title acid, $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{2}$, crystallized in the centrosymmetric space group $P 2_{1} / c$ with four molecules in the asymmetric unit. These four molecules form two pairs of cyclic hydrogen-bonded dimers of the usual sort, but these are not formed about centers of symmetry. The $\mathrm{O}_{\text {donor }} \cdots \mathrm{O}_{\text {accepior }}$ distances in these hydrogen bonds are 2.660 (3), 2.638 (3), 2.676 (3) and 2.634 (3) \AA. The carboxylic H atoms and the carboxylic O atoms are ordered. The biphenyl twist angles range from 46.5 (2) to $52.5(2)^{\circ}$. The dihedral angles between the carboxyl group planes and the planes of the rings to which they are attached range from 43.6 (3) to $50.9(3)^{\circ}$. In the two latter respects, this structure differs appreciably from the structures of the other two biphenyl monocarboxylic acids. The structure is layered parallel to the $a b$ plane.

